Contrasting facilitation profiles for agreement and reflexives revisited

A large-scale empirical evaluation of the cue-based retrieval model

Lena Jäger¹, Daniela Mertzen¹, Julie Van Dyke², and Shravan Vasishth¹

²University of Potsdam

²Haskins Laboratories

Berlin, September 2018

Cue-based retrieval: The ACT-R model

Anderson et al., 2004; Lewis & Vasishth, 2005

Retrieval latency and probability are determined by:

- i) Match of the retrieval cues
- ii) Similarity-based interference

Facilitatory interference in ungrammatical sentences

No interference

*The bodybuilder^{-plur}_{+ c-com}

injured themselves $\binom{plur}{c-com}$.

Interference

*The bodybuilder_plur bodybuilder_c-com

injured themselves $\binom{plur}{c-com}$.

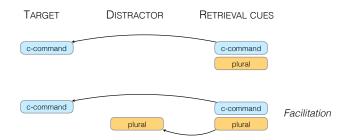
Facilitatory interference in ungrammatical sentences

No interference

```
*The bodybuilder^{-plur}_{+c\text{-}com} who worked with the \underset{-c\text{-}com}{\mathsf{trainer}}^{-plur}_{-c\text{-}com} injured themselves {^{plur}_{c\text{-}com}}}.
```

Interference

*The bodybuilder $^{-plur}_{+c-com}$ who worked with the $\frac{trainers}{-c-com}^{+plur}$ injured themselves $\binom{plur}{c-com}$.


Facilitatory interference in ungrammatical sentences

No interference

*The bodybuilder $_{+c-com}^{-plur}$ who worked with the $_{-c-com}^{-plur}$ injured themselves $_{c-com}^{plur}$.

Interference

*The bodybuilder $^{-plur}_{+c-com}$ who worked with the trainers $^{+plur}_{-c-com}$ injured themselves $\{^{plur}_{c-com}\}$.

Which cues are used?

- \rightarrow Implicit assumption of Lewis & Vasishth, 2005:
 - ► All available cues are used equally.
 - → No qualitative differences between dependency types.

 Direct comparison of interference effects in reflexives and subject-verb agreement.

- Direct comparison of interference effects in reflexives and subject-verb agreement.
- Facilitatory interference in subject-verb agreement.

- Direct comparison of interference effects in reflexives and subject-verb agreement.
- Facilitatory interference in subject-verb agreement.
- No facilitatory interference in reflexives.
- → Are structural cues given priority in reflexives?

- Direct comparison of interference effects in reflexives and subject-verb agreement.
- Facilitatory interference in subject-verb agreement.
- No facilitatory interference in reflexives.
- → Are structural cues given priority in reflexives?
- ? Low statistical power.

Statistical power: 6–30%

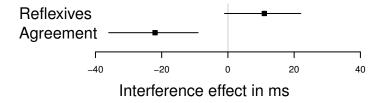
Statistical power: 6–30%

Claim based on a null result in reflexives.

Statistical power: 6–30%

- Claim based on a null result in reflexives.
- Type M(agnitude) error in agreement conditions?

Statistical power: 6–30%

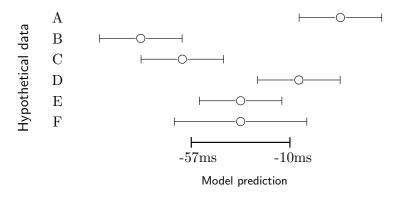

- Claim based on a null result in reflexives.
- ► Type M(agnitude) error in agreement conditions?
 Dillon et al, 2013 -119 [-205, -33] ms
 Meta-analysis of Jäger et al., 2017 -22 [-36, -9] ms

Jäger, Mertzen, Van Dyke, Vasishth

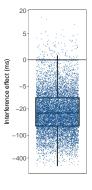
Statistical power: 6-30%

- Claim based on a null result in reflexives.
- ► Type M(agnitude) error in agreement conditions?
 Dillon et al, 2013 -119 [-205, -33] ms
 Meta-analysis of Jäger et al., 2017 -22 [-36, -9] ms
 - → see also Vasishth, Mertzen, Jäger, & Gelman (2018). The statistical significance filter leads to overoptimistic expectations of replicability, JML.

Meta-analysis: Interference in ungrammatical conditions



Jäger, Engelmann, & Vasishth: Similarity-based interference in sentence comprehension: Literature review and Bayesian meta-analysis, JML 94, 2017.


Our study

- ► Large-sample replication of Dillon et al. (2013)
- → Bayesian parameter estimation.
 - Quantitative evaluation of the Lewis & Vasishth (2005)
 ACT-R cue-based retrieval model.

Model evaluation: the ROPE approach (Kruschke, 2015)

ACT-R simulations

- Parameter combinations:
 - ▶ Latency factor $F \in \{0.05, 0.06, ..., 0.6\}$
 - ▶ Noise parameter $ANS \in \{0.1, 0.2, 0.3\}$
 - ▶ Maximum associative strength $MAS \in \{1, 2, 3, 4\}$
 - ▶ Mismatch penalty $MP \in \{0, 1, 2\}$
 - ▶ Retrieval threshold $\theta \in \{-2, -1.5, ..., 0\}$
- 6000 iterations per parameter configuration

Simulations conducted by Engelmann, Jäger, & Vasishth: The effect of prominence and cue association in retrieval processes: A computational account, https://osf.io/b56qv/

Ungrammatical conditions from Dillon et al., 2013

Agreement; no interference

*The amateur bodybuilder $_{-local\ subj}^{-plur}$ who worked with the personal trainer $_{-local\ subj}^{-plur}$ amazingly were $\{_{local\ subj}^{plur}\}$ competitive for the gold medal.

Agreement; interference

```
*The amateur bodybuilder_{-local\ subj}^{-plur} who worked with the personal trainers_{-local\ subj}^{+plur} amazingly were {plur\atop local\ subj} competitive for the gold medal.
```

Ungrammatical conditions from Dillon et al., 2013

Agreement; no interference

*The amateur bodybuilder $_{-local\ subj}^{-plur}$ who worked with the personal trainer $_{-local\ subj}^{-plur}$ amazingly were $\{_{local\ subj}^{plur}\}$ competitive for the gold medal.

Agreement; interference

*The amateur bodybuilder $_{+local\ subj}^{-plur}$ who worked with the personal trainers $_{-local\ subj}^{+plur}$ amazingly were $\{_{local\ subj}^{plur}\}$ competitive for the gold medal.

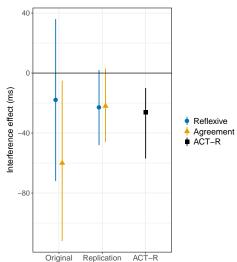
Reflexive: no interference

*The amateur bodybuilder $_{c-com}^{-plur}$ who worked with the personal trainer $_{c-com}^{-plur}$ amazingly injured themselves $\{_{c-com}^{plur}\}$ on the lightest weights.

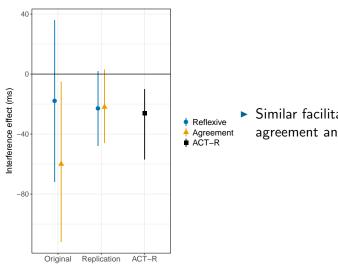
Reflexive; interference

*The amateur bodybuilder $_{c-com}^{-plur}$ who worked with the personal trainers $_{c-com}^{+plur}$ amazingly injured themselves $\{_{c-com}^{plur}\}$ on the lightest weights.

Method and Procedure

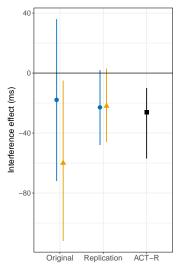

- Eyetracking-while-reading.
- ▶ 181 native speakers of English.
- ▶ 48 experimental items from Dillon et al. (2013), Expt. 1.
- ▶ Eyelink 1000 (1000Hz) with desktop mount camera.

Bayesian analysis of eye movements


Following Dillon et al., 2013:

- Region of interest: verb/reflexive plus subsequent word
- Dependent variable: total fixation times

Results



Results

Similar facilitation profiles in agreement and reflexives.

Results

- Reflexive
 Agreement
 ACT-R
 - Similar facilitation profiles in agreement and reflexives.
 - Weak support for the Lewis & Vasishth (2005) ACT-R model.

- Very similar estimates for reflexives and agreement.
- Facilitatory interference in both agreement and reflexives of approx. 20ms.

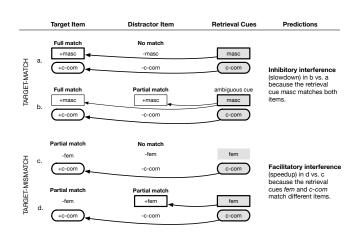
▶ More precise estimates for evaluating the predictions of quantitative models are needed.

- ▶ More precise estimates for evaluating the predictions of quantitative models are needed.
 - ► Larger sample size.

- More precise estimates for evaluating the predictions of quantitative models are needed.
 - Larger sample size.
 - ▶ Reduction of measurement error.

- More precise estimates for evaluating the predictions of quantitative models are needed.
 - Larger sample size.
 - Reduction of measurement error.
 - Manipulations with larger effects.

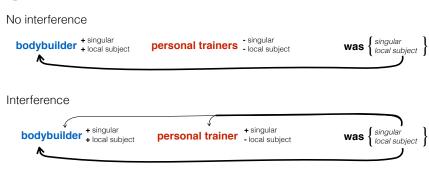
Introduction
Quantitative model predictions
Experiment
Conclusion


THANK YOU!

ACT-R equations

- ▶ Retrieval latency of item *i*: $RT := F \cdot e^{-A_i}$
- Activation of item *i*: $A_i := B_i + S_i + \epsilon$
- ▶ Baseline activation of item i: $B_i := ln(\sum_{j=1}^n t_j^{-d}) + \beta_i$
- ▶ Spreading activation S_i received by item i:

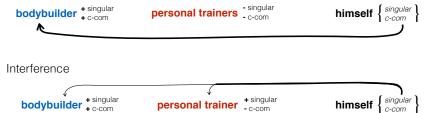
$$S_i := \sum_{j \in Cues} W_j S_{ij}$$


$$S_{ij} := MAS - In(fan_j \ W_j := activation from cue j$$

source: Jäger, Engelmann & Vasishth, JML, 2015

ACT-R prediction: Inhibition in grammatical conditions

Agreement



cue overload \rightarrow inhibition

ACT-R prediction: Inhibition in grammatical conditions

Reflexives

No interference

cue overload o inhibition


ACT-R prediction: Facilitation in ungrammatical conditions

Agreement

 $\mathsf{race} \to \textbf{facilitation}$

ACT-R prediction: Facilitation in ungrammatical conditions

Reflexives

 $\mathsf{race} \to \mathsf{facilitation}$

Bayesian hierarchical regression

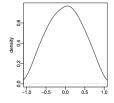
Random effects prior distributions:

$$\beta_{\text{subj}}, \beta_{\text{item}} \sim N_4(\vec{0}, Cov)$$
 (1)

$$Cov = \begin{bmatrix} \sigma_0 & & & \\ & \ddots & \\ & & \sigma_3 \end{bmatrix} \cdot R \cdot \begin{bmatrix} \sigma_0 & & \\ & \ddots & \\ & & \sigma_3 \end{bmatrix}$$
 (2)

$$\sigma_{1,...,3} \sim N_{+}(0,1)$$
 (3)

$$R \sim LKJ(2)$$
 (4)


Bayesian hierarchical regression

Random effects prior distributions:

$$\beta_{subj}, \beta_{item} \sim N_4(\vec{0}, Cov)$$
 (1)

$$Cov = \begin{bmatrix} \sigma_0 & & & \\ & \ddots & \\ & & \sigma_3 \end{bmatrix} \cdot R \cdot \begin{bmatrix} \sigma_0 & & \\ & \ddots & \\ & & \sigma_3 \end{bmatrix}$$
 (2)

$$\sigma_{1,...,3} \sim N_{+}(0,1)$$
 (3)

$$R \sim LKJ(2)$$
 (4)

Results: Original data

Effect	Posterior mean (ms)
Dependency	119 [71, 169]
Grammaticality	100 [69, 134]
${\sf Dependency} {\times} {\sf Grammaticality}$	9 [-18, 36]
Interference [grammatical] [reflexives]	2 [-57, 60]
Interference [grammatical] [agreement]	-34 [-85, 15]
Interference [ungrammatical] [reflexives]	-18 [-72, 36]
Interference [ungrammatical] [agreement]	-60 [-112, -5]

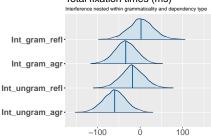
Results: Original data

	Effect	Posterior mean (ms)
<u>=</u>	Dependency	119 [71, 169]
	Grammaticality	100 [69, 134]
	${\sf Dependency}{\times}{\sf Grammaticality}$	9 [-18, 36]
	Interference	-27 [-56, 1]
<u>0</u>	Dependency×Interference	-20 [-46, 6]
Model	$Grammaticality { imes} Interference$	-11 [-38, 15]
2	$Dependency \times Grammaticality \times Interference$	-2 [-27, 24]
-2	Interference [grammatical]	-16 [-52, 20]
	Interference [ungrammatical]	-38 [-79, 1]
Model	Dependency×Interference [grammatical]	-17 [-56, 19]
2	Dependency×Interference [ungrammatical]	-21 [-56, 12]
	Interference [grammatical] [reflexives]	2 [-57, 60]
	Interference [grammatical] [agreement]	-34 [-85, 15]
Model	Interference [ungrammatical] [reflexives]	-18 [-72, 36]
2	Interference [ungrammatical] [agreement]	-60 [-112, -5]

Results: Replication experiment

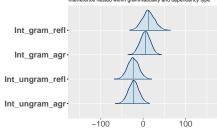
Effect	Posterior mean (ms)
Dependency	141 [100, 184]
Grammaticality	121 [100, 141]
${\sf Dependency} {\times} {\sf Grammaticality}$	-17 [-30, -5]
Interference [grammatical] [reflexives]	12 [-16, 43]
Interference [grammatical] [agreement]	5 [-18, 28]
Interference [ungrammatical] [reflexives]	-23 [-48, 2]
Interference [ungrammatical] [agreement]	-22 [-46, 3]

Results: Replication experiment


	Effect	Posterior mean (ms)
a E	Dependency	141 [100, 184]
	Grammaticality	121 [100, 141]
	${\sf Dependency} {\small \times} {\sf Grammaticality}$	-17 [-30, -5]
\exists	Interference	-7 [-19, 5]
Model	Dependency×Interference	-2 [-14, 10]
Ĭ	${\sf Grammaticality}{\times}{\sf Interference}$	-16 [-30, -2]
	$Dependency \times Grammaticality \times Interference$	2 [-11, 16]
7	Interference [grammatical]	9 [-9, 28]
Model	Interference [ungrammatical]	-23 [-41, -5]
Ĕ	Dependency×Interference [grammatical]	-4 [-21, 13]
	Dependency×Interference [ungrammatical]	1 [-17, 18]
3	Interference [grammatical] [reflexives]	12 [-16, 43]
Model	Interference [grammatical] [agreement]	5 [-18, 28]
Ĭ	Interference [ungrammatical] [reflexives]	-23 [-48, 2]
	Interference [ungrammatical] [agreement]	-22 [-46, 3]

Total fixation times

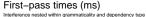
Dillon et al., 2013

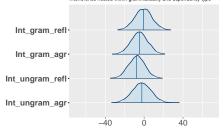

Large-sample study

Total fixation times (ms)

Total fixation times (ms)

Interference nested within grammaticality and dependency type

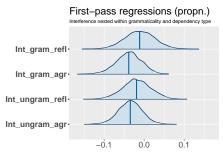


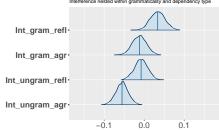

First-pass reading times

Dillon et al., 2013

Large-sample study

First-pass times (ms) Interference nested within grammaticality and dependency type Int_gram_refiInt_ungram_agrInt_ungram




Proportion of first-pass regressions

Dillon et al., 2013

Large-sample study

First-pass regressions (propn.)

